CHAPTER ONE: DIGITAL SYSTEMS AND BINARY NUMBERS

Introduction:

A digital system is a combination of devices \{mechanical, electrical, photo electronic,...,etc.\} arranged to perform certain functions in which quantities are represented digitally.

Digital systems are used in communication, business transactions, traffic control, spacecraft guidance, medical treatment, weather monitoring, the Internet, and many other commercial, industrial, and scientific enterprises.

Number Systems and Number-Base Conversions:

1. Decimal Number Systems

It is said to be of base (10) since it uses 10 digits $\{0,1,2,3, \ldots \ldots, 9\}$.
Ex. 1: $[7392]_{10}=2 \times 10^{0}+9 \times 10^{1}+3 \times 10^{2}+7 \times 10^{3}=7392$.
Ex. 2: $[0.421]_{10}=0 \times 10^{0}+4 \times 10^{-1}+2 \times 10^{-2}+1 \times 10^{-3}=0.421$.

For any numbers:

$$
a_{n} a_{n-1} \cdots a_{1} a_{0} \cdot a_{-1} a_{-2} \cdots . . . a_{m}=a_{0} \times N^{0}+a_{1} \times N^{1}+a_{n-1} \times N^{n-1}+a_{n} \times N^{n}+a_{-1} \times N^{-1}+a_{-2} \times N^{-2}+a_{m} \times N^{m}
$$

Where; N is the base of the system.

2. Binary Number Systems

It is said to be of base (2) since it uses 2 digits $\{0,1\}$.

Binary to Decimal Conversion

Ex. : $[11010.11]_{2}=0 \times 2^{0}+1 \times 2^{1}+0 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}+1 \times 2^{-1}+1 \times 2^{-2}=(26.75)_{10}$.

In General

To convert r - base number system to decimal number:

$$
a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} a_{-3}=a_{0} \times r^{0}+a_{1} \times r^{1}+a_{2} \times r^{2}+a_{-1} \times r^{-1}+a_{-2} \times r^{-2}+a_{-3} \times r^{-3}
$$

Ex. : $[4021.2]_{5}=1 \times 5^{0}+2 \times 5^{1}+0 \times 5^{2}+4 \times 5^{3}+2 \times 5^{-1}=(511.4)_{10}$.

Decimal to Binary Conversion

Ex. 1: Convert the decimal number [41] to binary number
The arithmetic process can be manipulated more conveniently as follows:

Integer
Remainder
$41 \div 2$
$20 \div 2$
$10 \div 2$
$5 \div 2$
$2 \div 2$
1
$(101001)_{2}=$ answer

So, $[41]_{10}=(101001)_{2}$

Ex. 2: Convert the decimal number [27.15] to binary number
The arithmetic process can be manipulated more conveniently as follows:

Integer	Remainder
$27 \div 2$	
$13 \div 2$	1
$6 \div 2$	1
$3 \div 2$	0
1	1
	1

$(11011)_{2}=$ answer
$[27]_{10}=(11011)_{2}$

Fraction
$0.15 \times 2=0.3$
$0.3 \times 2=0.6$
$0.6 \times 2=1.2$
$1.2 \times 2=0.4$
$0.4 \times 2=0.8$
$0.8 \times 2=1.6$
$1.6 \times 2=1.2$

Coefficient

0
0
1
0
0
1
$1 \downarrow$
$(0.0010011)_{2}=$ answer
$[0.15]_{10}=(0.0010011)_{2}$

So, $[27.15]_{10}=(11011.0010011)_{2}$

Note: Conversion from decimal integers to any base-r system is similar to this example, except that division is done by r instead of 2 .

Ex. : Convert the decimal number [22.5] to 4 base number system
The arithmetic process can be manipulated more conveniently as follows:

Integer	Remainder
$22 \div 4$	2
$5 \div 4$	1
1	1

$(112)_{4}=$ answer
$[22]_{10}=(112)_{4}$
Fraction
$0.5 \times 4=2.0$
$2.0 \times 4=0.0$

Coefficient

2
0
\downarrow
\longrightarrow
$(0.20)_{4}=$ answer
$[0.5]_{10}=(0.2)_{4}$

So, $[22.5]_{10}=(112.2)_{4}$
H.W: Convert the following numbers:

1. $(645.34)_{10} \longrightarrow()_{2}$
2. $(153.531)_{10} \longrightarrow()_{6}$
3. $(11101.1101)_{2} \longrightarrow()_{10}$

3. Octal Number Systems

It is said to be of base (8) since it uses 8 digits $\{0,1,2, \ldots \ldots, 7\}$.
Ex. 1: $[231]_{8}=1 \times 8^{0}+3 \times 8^{1}+2 \times 8^{2}=(153)_{10}$.
Ex. 2: Convert the decimal number [245.5] to octal number system
The arithmetic process can be manipulated more conveniently as follows:

Integer

Remainder

$$
245 \div 8
$$

$$
30 \div 8
$$

3

$(365)_{8}=$ answer
$[245]_{10}=(365)_{8}$

Fraction

$0.5 \times 8=4.0$
$4.0 \times 8=0.0$

Coefficient

4
$0 \downarrow$
\longrightarrow
$(0.40)_{8}=$ answer
$[0.5]_{10}=(0.4)_{4}$

So, $[245.5]_{10}=(365.4)_{8}$

4. Hexadecimal Number Systems

It is said to be of base (16) since it uses 16 digits $\{0,1,2, \ldots \ldots, 9, A, B, C, D, E, F\}$. Ex. 1 : $[2 \mathrm{C} .4 \mathrm{~A}]_{16}=12 \times 16^{0}+2 \times 16^{1}+4 \times 16^{-1}+10 \times 16^{-2}=(44.2)_{10}$.
Ex. 2 : Convert the decimal number [165.25] to hexadecimal number system The arithmetic process can be manipulated more conveniently as follows:

Integer	Remainder
$165 \div 16$	5
$(10) \mathrm{A}$	$\mathrm{A} \downarrow$

(A5) ${ }_{16}=$ answer
$[165]_{10}=(\mathrm{A} 5)_{16}$

Fraction

$0.25 \times 16=4.0$
$4.0 \times 16=0.0$

Coefficient

4
$0 \downarrow$
$\overrightarrow{(0.40)_{16}}=$ answer
$[0.25]_{10}=(0.4)_{16}$
So, $[165.25]_{10}=(A 5.4)_{16}$
H.W 1: Convert the following numbers:

1. (33.22) $\longrightarrow()_{8}$
2. (BA.C) ${ }_{16} \longrightarrow()_{7}$
H.W 2: In base [13], list the numbers between (4 and 40).

Conversion between Binary \& Octal systems

The conversion between Binary and Octal is accomplished by partitioning the binary number into groups of three digits.

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Ex. 1: Convert the octal number [63.4] to binary number system $(63.4)_{8}=(110011.100)_{2}$
Ex. 2: Convert the binary number (1011011.11011) to octal system $(001011011.110110)_{2}=(133.66)_{8}$

Conversion between Binary \& Hexadecimal systems

The conversion between Binary and Hexadecimal is accomplished by partitioning the binary number into groups of four digits.

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
F	1110
	1111

Ex. 1: Convert the Hexadecimal number [F67.19] to binary number system $(\text { F67.19 })_{16}=(111101100111.00011001)_{2}$
Ex. 2: Convert the binary number ($\mathbf{1 0 1 0 0 1 1 1 0 1 1 . 0 1 1 0 1 0 1 \text {) to hexadecimal system }}$ $(010100111011.01101010)_{2}=(53 \mathrm{~B} .6 \mathrm{~A})_{16}$
H.W: Convert the following numbers:

1. $(11011.1001)_{2} \longrightarrow()_{8}$
2. (DF3.C5) ${ }_{16} \longrightarrow()_{2}$

Arithmetic operations

Binary Arithmetic

1) Addition operation
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=0$; and carry 1 to the next column.
```
Ex. : Add; (1011.01 + 101.101)2
1011.010 +
0101.101
\((10000.111)_{2}\)
2) Subtraction operation
\(0-0=0\)
\(0-1=1\); and barrow 1 from the next column.
\(1-0=1\)
\(1-1=0\)
```

Ex. : Subtract; (1000.01-11.001) $\mathbf{2}_{2}$
1000.010
0011.001
$(101.001)_{2}$
3) Multiplication operation
$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$

Ex. : Multiply; (11.01 $\times 1.01)_{2}$
$1101 \times$
101
$1101+$
00000
110100
$(100.0001)_{2}$
4) Devision operation
$0 \div 0=$ undefined
$1 \div 0=$ undefined
$0 \div 1=0$
$1 \div 1=1$

So, $1101.01 \div 10=(110.101)_{2}$

R-Base Arithmetic
Ex. : Evaluate the following:

1. $(42.51+15.3)_{8} \&(42.51-15.3)_{8}$
42.51
42.51
$\frac{15.30}{(60.01)_{8}} \quad \frac{15.30}{(25.21)_{8}^{-}}$
2. $(B 3+4 D)_{16} \quad \&(B 3-4 D)_{16}$

B3 B3
+
4D 4D
$(100)_{16}$
(66) ${ }_{16}$
H.W: Perform the following operations

1. $(50.27)_{9} \div(15.28)_{9}$
2. $(44.56)_{7}+(12.5)_{6}$
3. (B3) ${ }_{13}-(6.55)_{13}$
4. $(33.24)_{5} \times(14.21)_{5}$

Complements of Numbers

In digital systems, the complements are used to simplify the subtraction operation. There are two types of complements for r - base system:

- r 's complement.
- $(r-1)$'s complement.

In binary system, there are 2 's complement and 1 's complement which represent the negative form of binary number.

1. The first complement (1's) are changed zeros to ones and ones to zeros.

1's
Ex. : (01001.1101) $\mathbf{2}_{2}$

2. The second complement (2's) can be either leaving least significant zeros and ones digit unchanged then replacing 1's to 0's and 0's to 1's; or by forming 1's complement and adding $\{1\}$ for the least significant bit.

Subtraction using Complements

In digital computer, if the subtraction implemented, we use the complements and addition as shown:

1) Convert the second number using 1's or 2 's complement.
2) Replace the subtraction operation to addition operation.

Ex. 1: Perform the following operation using 2's complement.
$(1010100)_{2}-(1000100)_{2}$

0111100

Ex. 2: Perform the following operation using 2's complement. $(1010011.01)_{2}-(0101100.10)_{2}$

1's

$(0101100.10)_{2} \longrightarrow(1010011.01)_{1 ' \mathrm{~s}}+1=(1010011.10)_{2^{\prime} \mathrm{s}}$
1010011.01
$+$
1010011.10
§ $0100110.11 \quad \ldots . .(0100110.11)_{2}$
Ignored

Ex. 3: Perform the following operation using 1's complement. $(1010111)_{2}-(0110110)_{2}$
$(0110110)_{2} \xrightarrow{\text { 1's }}(1001001)_{1 \text { 's }}$ 1010111
$+$
1001001
® 0100000
$\xrightarrow[(100001)_{2}]{\longrightarrow}+$

Ex. 4: Find the 12's complement and 13 's complement to the number [B65.5C] $]_{13}$.
CCC.CC

B65.5C
$(167.70)_{12 ' s}+1=(167.71)_{13 ' s}$

Binary Logic Gates

1. AND Gate:

A	B	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$
\mathrm{Z}=\mathrm{A} \cdot \mathrm{~B}
$$

2. OR Gate:

A	B	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$
\mathrm{Z}=\mathrm{A}+\mathrm{B}
$$

3. NOT Gate:

x	y
0	1
1	0

NOT Gate Truth Table

$y=\bar{x}$

4. NAND Gate:

x	y	Z
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gate Truth Table

$\mathrm{z}=\mathrm{x} \cdot \mathrm{y}$

5. NOR Gate:

x	y	z
0	0	1
0	1	0
1	0	0
1	1	0

$$
\mathrm{z}=\mathrm{x}+\mathrm{y}
$$

6. Exclusive OR (Ex - OR) Gate:

\mathbf{x}	Y	z
0	0	0
0	1	1
1	0	1
1	1	0

$z=x^{\prime} y+x y^{\prime}=x \oplus y$
7. Exclusive NOR (Ex - NOR) Gate:

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	0

Ex - NOR Gate Truth Table

$\mathrm{Y}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{A} \oplus \mathrm{B}$

